3,291 research outputs found

    3-D Statistical Channel Model for Millimeter-Wave Outdoor Mobile Broadband Communications

    Full text link
    This paper presents an omnidirectional spatial and temporal 3-dimensional statistical channel model for 28 GHz dense urban non-line of sight environments. The channel model is developed from 28 GHz ultrawideband propagation measurements obtained with a 400 megachips per second broadband sliding correlator channel sounder and highly directional, steerable horn antennas in New York City. A 3GPP-like statistical channel model that is easy to implement in software or hardware is developed from measured power delay profiles and a synthesized method for providing absolute propagation delays recovered from 3-D ray-tracing, as well as measured angle of departure and angle of arrival power spectra. The extracted statistics are used to implement a MATLAB-based statistical simulator that generates 3-D millimeter-wave temporal and spatial channel coefficients that reproduce realistic impulse responses of measured urban channels. The methods and model presented here can be used for millimeter-wave system-wide simulations, and air interface design and capacity analyses.Comment: 7 pages, 6 figures, ICC 2015 (London, UK, to appear

    28 GHz and 73 GHz Millimeter-Wave Indoor Propagation Measurements and Path Loss Models

    Full text link
    This paper presents 28 GHz and 73 GHz millimeter- wave propagation measurements performed in a typical office environment using a 400 Megachip-per-second broadband sliding correlator channel sounder and highly directional steerable 15 dBi (30 degrees beamwidth) and 20 dBi (15 degrees beamwidth) horn antennas. Power delay profiles were acquired for 48 transmitter-receiver location combinations over distances ranging from 3.9 m to 45.9 m with maximum transmit powers of 24 dBm and 12.3 dBm at 28 GHz and 73 GHz, respectively. Directional and omnidirectional path loss models and RMS delay spread statistics are presented for line-of-sight and non-line-of-sight environments for both co- and cross-polarized antenna configurations. The LOS omnidirectional path loss exponents were 1.1 and 1.3 at 28 GHz and 73 GHz, and 2.7 and 3.2 in NLOS at 28 GHz and 73 GHz, respectively, for vertically-polarized antennas. The mean directional RMS delay spreads were 18.4 ns and 13.3 ns, with maximum values of 193 ns and 288 ns at 28 GHz and 73 GHz, respectively.Comment: 7 pages, 9 figures, 2015 IEEE International Conference on Communications (ICC), ICC Workshop

    MATH 346-003: Mathematics of Finance I

    Get PDF

    MATH 441-001: Actuarial Mathematics I

    Get PDF

    The Anticorrelated Nature of the Primary and Secondary Eclipse Timing Variations for the Kepler Contact Binaries

    Get PDF
    We report on a study of eclipse timing variations in contact binary systems, using long-cadence lightcurves in the Kepler archive. As a first step, 'observed minus calculated' (O-C) curves were produced for both the primary and secondary eclipses of some 2000 Kepler binaries. We find ~390 short-period binaries with O-C curves that exhibit (i) random-walk like variations or quasi-periodicities, with typical amplitudes of +/- 200-300 seconds, and (ii) anticorrelations between the primary and secondary eclipse timing variations. We present a detailed analysis and results for 32 of these binaries with orbital periods in the range of 0.35 +/- 0.05 days. The anticorrelations observed in their O-C curves cannot be explained by a model involving mass transfer, which among other things requires implausibly high rates of ~0.01 M_sun per year. We show that the anticorrelated behavior, the amplitude of the O-C delays, and the overall random-walk like behavior can be explained by the presence of a starspot that is continuously visible around the orbit and slowly changes its longitude on timescales of weeks to months. The quasi-periods of ~50-200 days observed in the O-C curves suggest values for k, the coefficient of the latitude dependence of the stellar differential rotation, of ~0.003-0.013.Comment: Published in The Astrophysical Journal, 2013, Vol. 774, p.81; 14 pages, 12 figures, and 2 table
    • …
    corecore